17/10/2014
1) Power Rule Function: f(x) = {u(x)}n èf´(x) = n {u(x)}n-1 . dy/dx u(x)
f(x) = (3x+5)2 è f´(x) = 2 (3x+5) 2-1. 3 è f´(x) = 6(3x+5) è f´(x) = 18x + 30 Answer = 18x + 30
2) Exponential Function: f(x) – ex è f´(x) =ex . dy/dx (x)
f(x) = e3x èf(x) = e3x . dy/dx (3x) èf(x) = e3x . 3 Answer = 3e3x
3) Natural Log: f(x) = log (x) è f´(x) = (1/x).dy/dx (x)
f(x) = log (5x) èf´(x) =(1/5x). dy/dx (5x) èf´(x) = (1/5x) . 5 Answer = 1/x
f(x) = log (4x2 – 16x) è f´(x) = {1/(4x2 – 16x)} dy/dx (4x2 – 16x) f´(x) = {1/(4x2 – 16x)} . (8x – 16)
f´(x) = {4(2x – 4)}/{4(x2 – 4x)} è f´(x) = (2x – 4)/(x2 – 4x) Answer = (2x – 4)/(x2 – 4x)
4) Chain Rule: dy/dx = {(dy/du) .(du/dx)}
y(u) = 20 – 3u, u(x) = 5x – 4
dy/du = 20 – 3u dy/du = 5x – 4
dy/du = 0 – 3(1) dy/du = 5(1) – 0
dy/du = – 3 dy/du = 5
dy/dx = {(dy/du) . (du/dx)} èdy/dx = ( - 3 . 5) èdy/dx = – 15 Answer = – 15
Note: page 712 full exercise 15.6
No comments:
Post a Comment